If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2=59
We move all terms to the left:
j^2-(59)=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| (-95)-5x=(-20)x+42-17 | | 2(x+16)=136 | | 18x-3(6x)=40 | | 81x2-90x+21=0 | | -3r-6=-7r+34 | | 18x-18x=40 | | 11x-4x+2x=2711x-4x+2x=27 | | 11x-4x+2x=2711x-4x+2x=273 | | -y5+3=11 | | −3�−6=−3x−6= −74 | | 5x(2x-5)=20 | | −3x−6=−3x−6= −7x+34−7x+34 | | 4a+30=70 | | 2x3+-3x2+10x+6=0 | | y=7-(2) | | x=7-(x) | | (2x/11)+(6x+7)=180 | | x/x+8=515 | | 35+7x=-3-5-4x | | t=7.2t2-18 | | 5x‒8=‒20 | | y=4.1 | | d/4=103 | | 4u+-4u=8 | | 7=y+21/7 | | 4x+60x=180 | | 4x+7=4x+7= 5x+115x+11 | | 2x-5/3=64 | | 4+2x=-34 | | -7x+3(2x+5)=22 | | 8(5z+1)= | | -8z-8=8 |